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Abstract—Most widely-used modern audio codecs, such as Ogg Vorbis
and MP3, as well as more recent “neural” codecs like Meta’s Encodec
[1] or the Descript Audio Codec [2] are based on block-coding; audio is
divided into overlapping, fixed-size “frames” which are then compressed.
While they often yield excellent reproductions and can be used for
downstream tasks such as text-to-audio, they do not produce an intuitive,
directly-interpretable representation. In this work, we introduce a proof-
of-concept audio encoder that represents audio as a sparse set of events
and their times-of-occurrence. Rudimentary physics-based assumptions
are used to model attack and the physical resonance of both the
instrument being played and the room in which a performance occurs,
hopefully encouraging a sparse, parsimonious, and easy-to-interpret
representation.

1. INTRODUCTION

This work imagines a future audio codec where some types of musical
composition could take place directly in the audio codec space.
The text-to-audio paradigm works well for non-musicians creating
background music for movies, advertisements or social media content,
but it is our view that experienced musicians and composers work in
a “space” not fully captured by language alone. We theorize that they
will continue to prefer a finer-grained representation that provides
interpretability and control at multiple scales.

This work does not seek to produce a generative model of musical
audio, but could serve as the underlying encoding on which generative
models are trained. It is the authors’ intuition that models trained
on this quasi-symbolic representation might have a much more
thorough “understanding” of the content they produce, given the
point-cloud-like nature of the signal. Instead of predicting the next
arbitrarily-sized frame, the generative model would be predicting
the relationships between “events”. Long-term coherence in musical
generation continues to be a challenge, and we speculate that many
models spend large shares of their capacity learning to reproduce
physical resonance, reducing the share that may model the human
forces that drive them in interesting, musical directions.

All model and experiment code is implemented using the PyTorch
[3] Python library and can be found on GitHub1. Audio examples
can be heard at this https URL2

2. PRIOR WORK

We take inspiration from a wealth of previous works dealing with
sparse and interpretable representations of audio signals. Matching
pursuit [5] is an iterative algorithm that decomposes a signal into
a sparse set of representative “atoms”. It produces a representation
of audio signals similar to the one used in granular synthesis [6],
which represents audio as point-cloud-like structure of audio “grains”
arranged in time. While the notion of “events in time” feels intutive
to many of us, both approaches traditionally require hundreds or
thousands of “atoms” or “grains” to accurately reconstruct a signal,
These audio quanta are often orders of shorter than the time scale on
which we typically conceive of audio events. Furthermore, matching

1https://github.com/JohnVinyard/matching-pursuit
2https://blog.cochlea.xyz/sparse-interpretable-audio-codec-paper.html

Fig. 1: In this visualization of the codec representation, we see that events
can overlap and vary in length. Time is along the x-axis, event positions are
along the y-axis and event colors are chosen by applying t-SNE [4] to the
set of 32 event vectors, targeting a single dimension for the y-axis and three
dimensions to represent an RGB color value.

pursuit, at least when operating naively in the time domain can spend
capacity on perceptually irrelevant details and struggle to reproduce
noisy signals in a convincing way. In recent years, attempts have
been made to use longer atoms and paramterize dictionaries of atoms
in more meaningful ways [7]. In this work we hope to continue the
trend toward fewer and more meaningful “atoms” or “events” that
exist at scales native to a human musician.

Unsupervised audio source separation, such as in [8] seeks to
separate mixtures of instruments or voices into distinct tracks, or
“stems” as they are often referred to in music production, while
unsupervised music transcription [9] seeks to infer a musical score,
or set of instructions sufficient for a musician to reproduce the piece.
Other recent works seek to produce meaningful latent representations
by encouraging sparsity as part of the training objective [10] In
this work, we seek to infer a score of sorts, where each encoded
note or event contains enough information to create a perceptually
indistinguishable reproduction of the event.

Finally, source-excitation synthesis [11] models natural sounds
as injections of energy into a system, often represented by a burst
or pulse-train of white noise, and the resonance of that system in
response to the event, often represented by one or more time-varying
filters that emulate the resonant modes of the system along with any
deformations of the system that occur as it resonates. In this work,
we use this synthesis technique as the basis of the event decoder.
Empirically, this strong inductive bias seems to aid in the promotion
of sparsity (few events) and to provide us with intermediate states
that are open to inspection and interpretation.

3. AUDIO CODEC DETAILS

Our proposed audio encoding consists of a sequence of two-tuples,
each consisting of a scalar event time and the parameters required
for the decoder to render the event, transforming it into “raw” PCM
audio samples. In addition to straightforward seeking and slicing,
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this encoding also makes it possible to filter a subset of events in a
particular audio slice according to some criteria, an operation that is
less straightforward in a block-coding scheme.

3.1. Compression Rate

While our main aim in this work is a representation that is sparse,
interpretable and easy-to-manipulate, a compressive representation is
one important aspect of a successful codec and should be discussed.
For our experiment, the encoder is run for a fixed number of steps,
32 in our case, and produces a two-tuple of time-of-occurrence and
32-dimensional event vector. Each event time can be stored as a single
scalar value. Because we encode 216 samples, or around 2.98 seconds
of audio at a time, at a 22050hz sampling rate, we arrive at:

216samples

(32 ∗ 32) + 32
=v 62x (1)

4. MODEL

4.1. Audio Representation

In this work, we seek an audio representation that can be iteratively
decomposed, without wasting capacity on perceptually-irrelevant
details. As a concrete example, removing energy from a time-domain
representation of noise can be very difficult, as the only way to do so
is to match the signal exactly even though small time and/or frequency
shifts would be imperceptibile to the common listener.

We choose the widely-used STFT magnitude spectrogram represen-
tation of audio, with a window size of 2048 and a hop size of 256.
The 75% overlap means that we can discard phase but still recover
most perceptually relevant details, including phase relationships.

While the model only encodes segments of 216 samples at a time,
it analyzes segments of 217, encoding and removing only events
that begin in the first half of the audio segment. This enables us to
implemenent a streaming encoder. The model’s input at each step is
an STFT magnitude spectrogram with 1025 real-valued coefficients
and 512 “frames” in the time dimension.

4.2. Encoder

In this work, the encoder is paramaterized as an anti-causal, dilated
convolutional network with a kernel size of 2 at each layer and dilation
sizes of [1, 2, 4, 8, 16, 32, 64].

In our experiments, the encoder runs for a fixed number of steps
(32). At each step, it transforms the residual spectrogram into a tensor
with 32 channels and 512 frames, the same time dimension as the
input spectrogram. The “residual” spectrogram at the first step is
simply the STFT magnitude spectrogram computed from the input
audio.

The encoder then selects a single event vector along the time
dimension, setting all other 32-dimensional vectors to zero. When we
take the norm of each position along the time dimension, we derive a
one-hot vector that will be used for the coarse-grained timing of the
event when it is “scheduled” after the event decoder has generated
the event.

Once generated and scheduled, the STFT magnitude spectrogram
of the newly-generated event is computed and subtracted from the
residual spectrogram, preparing the model to begin the next iteration.

While our initial experiments use a fixed number of encoding steps,
we believe that we will be able to devise more intelligent stopping
conditions in future versions of this work that take advantage of the
variable information density across different audio segments. One
simple and obvious possibility is to choose a small norm as the
threshold at which the sound would no longer be audible to listeners.

Fig. 2: High-level model architecture. The encoder and decoder work together
to incrementally remove energy from the input representation, an STFT-based
magnitude spectrogram. At each step, the encoder produces a single event
vector and time-of-occurrence. The decoder generates an audio event, positions
it in time, and subtracts it from the input representation.

4.3. Streaming Algorithm
To enable a streaming encoding algorithm, the encoder masks the
second-half of its output just before choosing the next event vector
to be decoded and removed. This means that the encoder is always
choosing events that begin in the first-half of its input, but the events
it chooses may into the second half.

To enforce this focus on the first half of the analyzed signal, we
mask encoder output before choosing an event, and multiply the
second half of the signal by a linear gradient beginning at 1 and
ending at 0 which extends from sample 216 to sample 217. This
means that model is penalized less for failures to remove energy from
the second half of the signal and that it does not attempt to produce
overly-long events that stretch far into the second-half.

4.4. Decoder
Instead of a more traditional convolutional upsampling network, we
choose a source-excitation model for the event decoder in the hope
that it encourages both sparser and easier-to-interpret events.

In Figure 3, we can see a diagram of a single decoder block. Each
block has a few distinct parts with clear interpretations. Inputs to
each block are generated by a small, “multi-head” MLP whose input
is the original 32-dimensional event vector.

The input to each block is a source signal, which takes the form
of one or more bursts of noise that represent the injection of energy
into the system. The noise burst is convolved with a number of
decaying resonances, represented in our work as relatively long FIR
filters composed of exponentially decaying sinusoids. Each convolved
resonance is then multiplied by a time-varying mask and summed,
emulating a filter with time-varying parameters, or in a more physical
interpretation, the deformations applied over time to a resonating
object.

We refer to the number of resonances chosen for a particular block
as its expressivity. Some simple physical resonances, such as a tuning
fork, might only require that expressivity=1, while others, such as a
vibrato violin note, might require a larger expressivity number.

Finally a two-channel gain is applied to the original source and the
time-varying, filtered-signal, akin to a weighted skip connection.
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Fig. 3: Here, we can see the anatomy of a decoder block, which performs
something like source-excitation synthesis. A burst of noise is convolved with
a number of decaying resonances. A time-varying mixture interpolates between
the different resonances over time, after which the original impulse and the
resonant signal are mixed together before being output.

These decoder blocks can be stacked, with the output of one block
serving as the input or “impulse” fed to the next.

For this set of experiments, we choose three decoder blocks, with the
last layer being fixed and given an expressivity value of 1. This block
is initialized with a set of freely-available room impulse responses
[12] that are commonly used to produce reverb effects. This makes it
possible to disentangle instrument and room resonances.

For coarse-grained scheduling, the audio generated by the decoder is
first convolved with the one-hot vector produced by the encoder. Fine-
grained, sample-level scheduling is achieved using a frequency-domain
time-shift, represented by a single scalar value, that is generated from
the event vector by one of the decoder’s MLP “heads”.

4.5. Model Size

The model used in our experiments has a total of 45.1M parameters
and occupies 200MB when serialized to disk. We feel that even this
small model shows promise and that further experiments with larger
models are warranted.

5. EXPERIMENT

Our primary experimental goal is to show that we can encode a
large set of “natural” (non-synthesized) musical audio with diverse
instruments and recording conditions into a representation that enjoys
sparsity, interpretability and good reproduction quality.

5.1. Data Set

We train our model on the MusicNet dataset [13], an open dataset
containing 33 hours of classical music, recorded in diverse spaces
using a range of recording equipment of varying quality. The
recordings often include leading silence, trailing applause, and
incidental human sounds throughout (coughs, movement, etc).

While the dataset as a whole includes fine-grained score information
about each musical piece, we do not use this component of the dataset,
using only the audio signals to learn our unsupervised model.

5.2. Training Algorithm
During training, we repeatedly draw segments of audio that are
approximately 5.94 seconds in length from the Music Net dataset
at random, with length 217 samples at 22050hz sampling rate and a
batch size of two.

We train using a single NVIDIA GeForce RTX 3060 for approxi-
mately 76 hours.

Each batch is passed through the encoding and decoding process
for a fixed number of steps, 32, in our case, and then an iterative
loss is computed, encouraging each step to have removed as much
energy (expressed as the L1 norm) from the signal as possible. This
loss is minimized using the Adam optimizer with a learning rate
of 1e−4. Empirically, we found that in early stages of training, the
model tended to simply output silence as a pathological local minima.
Empirically, the relatively snall learning rate seemed to help move
beyond these early-stage pathologies, but a learning-rate schedule
that increases once the model has stabilized might yield better results
overall.

5.3. Loss Functions
The loss function is also iterative and greedy. Using the same
magnitude spectrogram representation analyed by the encoder, the
loss function attempts to maximize the reduction in the L1 norm of
the spectrogram at each step. Prior to computing the loss, the input
events are sorted in order of descending L1 norm, such that the event
with the most energy is subtracted first and the event with the least
energy is subtracted last.

6. INTERPRETABLE AND MANIPULATABLE
REPRESENTATION

In this section, we discuss the multiple scales of interpretability
and manipulatibliity provided by the propsed codec. We intuit that
these properties will be appealing to musicians and sound designers,
and speculate that these features may prove just as important as
compression rates under some circumstances.

6.1. Events and Times-of-Occurrence
As shown in Figure1, relatively few events are required to reconstruct
musical audio segments. Information density and temporal structure is
apparent at-a-glance. At this scale, it is possible to preview individual
events, translate them in time, and add or remove events based on
some criteria.

6.2. Events Vectors
Aside from a coarse-grained event time, the low-dimensional event
vectors encode all information required to produce an audio event.
This work does not explore the latent space learned by the encoder
in-depth, but an interactive two-dimensional map of event vectors
(see Figure 4) demonstrates that a nearest-neighbors exploration can
locate interesting variations on a particular event.

6.3. Decoder Interpretation
While the high-level model architecture is decoder-agnostic, our choice
of a source-excitation-inspired decoder in this first experiment means
that further interpretation and manipulation is possible by inspecting
intermediate decoder states. In Figure 5 we see spectrograms of the
initial impulse, the resonance, and finally the selected room impulse-
response for a single event. While this work does not include an
in-depth exploration of decoder interpration and manipulation, it’s
possible that different impulses, resonances, or room impulse responses
could be chosen, while other aspects are held constant in order to
subtly or profoundly influence the rendering of a particular event.



Fig. 4: This scatterplot shows event vectors from a large number of audio
segments mapped onto a 2D-plane using t-SNE [4]. Exploring nearby neighbors
can locate variations of a query event. An interactive version of this scatterplot
can be explored here.

Fig. 5: Here we can see intermediate stages of the source-excitation-based
decoder at work. From left to right, we see A. a spectrogram of the initial
noisy impulse B. a spectogram of the noisy impulse convolved with the chosen
decaying resonance and C. the result from step B. convolved with a room
impulse response.

7. CONCLUSION

In this work, we propose an audio codec optimized for interpretability
and ease-of-manipulation and then discuss a simple, small-scale
reference implementation of an encoder and decoder network. We find
that while subjective reproduction quality falls short in this iteration,
the results achieved with a relatively small network are encouraging,
and the properties of the codec that promote intuitive understanding
of the audio content are worth further study.

8. FUTURE WORK

Given the encouraging small-scale results, we feel that there are
several future experiments ripe for exploration.

8.1. Perceptually-Inspired Losses

Our sense is that perceptual audio losses are an under-explored
area, and that adversarial losses are often introduced to account
for a fundamental mismatch between what commonly-used audio
representations measure and what is perceptually meaningful to
humans. While the magnitude spectrogram representation used in
this work may largely solve the problem of dealing with perceptual
invariances around band-limited noise, it does not address higher-
level and more complex invariances in human auditory perception, as
discussed in [14]. Leveraging perceptual invariances in “textures”, such
as background hiss and noise, will likely result in simpler encodings.
Audio losses that are more perceptually-informed will undoubtedly
yield more parsimonious encodings, as more model capacity will be
spent on perceptually-relevant details.

8.2. Encoder Variants
The anti-causal dilated convolutional network used in this iteration,
while simple and parameter-efficient, may be suboptimal as an encoder.
UNet and transformer enocder architectures are both worth exploring
in future versions of this research.

8.3. Decoder Variants
Anecdotally, we have observed that the roughly-physics-based induc-
tive biases of the decoder encourage a sparser representation and
better reconstruction quality, but many other decoder architectures are
possible, with much to be learned from the larger field of differentiable
digital signal processing [15].

Another possibility is that events could be routed to specialized
decoders, akin to the switch transformer architecture [16].

8.4. Redundant Events and Sparsity
Finally, aside from the physics-based inductive bias in the decoder,
this work makes no effort to further impose sparsity or penalize overly
“verbose” representations. It is our observation that this iteration of
the model frequently produces redunant, duplicative events that could
be collapsed further.

Future work should explore sparsity and/or energy penalties, seeking
to maintain high reproduction quality while producing the sparsest,
or lowest-energy representation that can adequately explain the input
signal.

https://blog.cochlea.xyz/scatter.html
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